Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 11(11)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38004740

RESUMO

Antimicrobial resistance is a significant concern worldwide; meanwhile, the impact of 3rd generation cephalosporin (3GC) antibiotics on the microbial communities of cattle and resistance within these communities is largely unknown. The objectives of this study were to determine the effects of two-dose ceftiofur crystalline-free acid (2-CCFA) treatment on the fecal microbiota and on the quantities of second-and third-generation cephalosporin, fluoroquinolone, and macrolide resistance genes in Holstein-Friesian dairy cows in the southwestern United States. Across three dairy farms, 124 matched pairs of cows were enrolled in a longitudinal study. Following the product label regimen, CCFA was administered on days 0 and 3 to cows diagnosed with postpartum metritis. Healthy cows were pair-matched based on lactation number and calving date. Fecal samples were collected on days 0, 6, and 16 and pooled in groups of 4 (n = 192) by farm, day, and treatment group for community DNA extraction. The characterization of community DNA included real-time PCR (qPCR) to quantify the following antibiotic resistance genes: blaCMY-2, blaCTX-M, mphA, qnrB19, and the highly conserved 16S rRNA back-calculated to gene copies per gram of feces. Additionally, 16S rRNA amplicon sequencing and metagenomics analyses were used to determine differences in bacterial community composition by treatment, day, and farm. Overall, blaCMY-2 gene copies per gram of feces increased significantly (p ≤ 0.05) in the treated group compared to the untreated group on day 6 and remained elevated on day 16. However, blaCTX-M, mphA, and qnrB19 gene quantities did not differ significantly (p ≥ 0.05) between treatment groups, days, or farms, suggesting a cephamycinase-specific enhancement in cows on these farms. Perhaps unexpectedly, 16S rRNA amplicon metagenomic analyses showed that the fecal bacterial communities from treated animals on day 6 had significantly greater (p ≤ 0.05) alpha and beta diversity than the untreated group. Two-dose ceftiofur treatment in dairy cows with metritis elevates cephamycinase gene quantities among all fecal bacteria while paradoxically increasing microbial diversity.

2.
PLoS One ; 14(7): e0220068, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31329639

RESUMO

A pair-matched longitudinal study conducted on three dairy farms in the U.S. High-Plains explored the temporal effects of two-dose ceftiofur crystalline-free acid (CCFA) treatment for metritis on third-generation cephalosporin (3GC) resistance among enteric E. coli in Holstein-Friesian cows. The current 13-day slaughter withholding period does not account for rising populations of third-generation cephalosporin (3GC) resistant bacteria in feces of animals following CCFA treatment. A total of 124 matched-pairs of cows were enrolled in the study. Cows diagnosed with postpartum metritis received the product twice at the labeled dose of 6.6 mg/kg subcutaneously at the base of alternating ears. Untreated cows-absent clinical metritis-were matched on lactation number and calving date. Feces were collected per rectum on days 0 (baseline), 6, 16, 28, and 56. Environmental samples, from watering troughs as well as surface manure from fresh-cow, hospital, maternity, and milking pens, and from the compost pile were collected prior to the animal sample collection period. Historical data on metritis rates and CCFA use were compiled from herd records. On day 0, cows exhibited an overall mean difference of over 4 log10 colony forming units (CFU) comparing 3GC resistant E. coli to the general E. coli population. At the first eligible slaughter date, the difference declined to 3.31 log10 CFU among cows in the CCFA group (P<0.01 compared to control cows). Such differences were no longer observed between the treated and control groups by day 28. Results suggest a 13-day withholding period following the final treatment is insufficient to allow levels of 3GC resistant E. coli to return to baseline. This effect varied by farm and was dependent upon the starting level of resistance. A farm-specific extended slaughter-withholding period could reduce the microbial risk to food products at slaughter.


Assuntos
Antibacterianos/administração & dosagem , Doenças dos Bovinos/tratamento farmacológico , Cefalosporinas/administração & dosagem , Farmacorresistência Bacteriana , Endometrite/tratamento farmacológico , Escherichia coli Extraintestinal Patogênica/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bovinos , Doenças dos Bovinos/microbiologia , Cefalosporinas/farmacologia , Cefalosporinas/uso terapêutico , Esquema de Medicação , Endometrite/microbiologia , Endometrite/veterinária , Escherichia coli Extraintestinal Patogênica/patogenicidade , Feminino
3.
J Anim Sci ; 97(1): 424-436, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30388223

RESUMO

Effects of supplemental Zn as Zn sulfate on feedlot performance, carcass traits, and antimicrobial resistance were evaluated using 480 crossbred heifers (BW = 385 kg ± 13.08) in a randomized complete block design. Heifers were blocked by BW and randomly assigned within block to diets with 0, 30, 60, or 90 mg supplemental Zn/kg DM. Heifers were housed in dirt-surfaced pens (20 animals per pen; 6 pens per treatment) equipped with fence-line feed bunks and automatic water fountains. Heifers were fed once daily to ensure ad libitum intake. Plasma was collected on day 0 from five randomly selected heifers per pen and repeated on days 63 and 115 to determine plasma Zn concentrations. Random samples of freshly voided feces were collected from the surface of each pen the day of harvest to determine antibiotic resistance. Heifers were transported on day 144 to a commercial abattoir where hot carcass weight (HCW) and incidence of liver abscesses were recorded at harvest and HCW, dressed yield, ribeye area, 12th rib fat, quality and yield grades were recorded after 36 h of refrigeration. Plasma Zn concentration increased (P = 0.02) linearly in response to increasing concentrations of dietary Zn. Final BW and ADG were unaffected by supplementation (P ≥ 0.29). Quantified levels of resistance to ceftriaxone and tetracycline among fecal Escherichia coli were not impacted (P > 0.05) by dietary zinc concentrations. Increasing Zn concentrations tended to decrease (linear effect, P = 0.07) DMI, resulting in a linear (P = 0.03) and tendency for quadratic (P = 0.12) improvement in feed efficiency with increasing Zn concentration. No differences were detected for HCW, dressed yield, ribeye area, 12th rib fat, percentages of carcasses grading Select or Choice, or yield grade (P > 0.53), but added Zn tended to affect percentage of carcasses that graded Prime, peaking at 60 mg/kg added Zn (quadratic effect, P = 0.07). In vitro fermentations were performed using ruminal fluid cultures containing 0, 30, 60, 90, 120, or 150 mg Zn/kg substrate DM to determine impact of Zn on gas production, VFA concentrations, and in vitro DM disappearance (IVDMD). There were no effects of Zn on in vitro gas production, IVDMD, or most VFA (P > 0.15), but isovalerate decreased linearly in response to added Zn (P = 0.05). Supplementing finishing heifers up to 60 mg Zn/kg diet DM improved feed efficiency compared to other treatments.


Assuntos
Antibacterianos/farmacologia , Composição Corporal/efeitos dos fármacos , Bovinos , Farmacorresistência Bacteriana , Sulfato de Zinco/farmacologia , Ração Animal/análise , Animais , Bactérias/efeitos dos fármacos , Dieta/veterinária , Suplementos Nutricionais , Feminino , Masculino , Sulfato de Zinco/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...